Vector Bundles on Projective Space

نویسنده

  • Takumi Murayama
چکیده

Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, §1.2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splitting Criteria for Vector Bundles on Higher Dimensional Varieties

We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on a class of smooth complex projective varieties of dimension ≥ 4, over which every extension of line bundles splits.

متن کامل

A Splitting Criterion for Vector Bundles on Higher Dimensional Varieties

We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on arbitrary smooth complex projective varieties of dimension ≥ 4, which asserts that a vector bundle E on X splits iff its restriction E|Y to an ample smooth codimension 1 subvariety Y ⊂ X splits.

متن کامل

Projective Quantum Mechanics

We study the quantisation of complex, finite–dimensional, compact, classical phase spaces C, by explicitly constructing Hilbert–space vector bundles over C. We find that these vector bundles split as the direct sum of two holomorphic vector bundles: the holomorphic tangent bundle T (C), plus a complex line bundle N(C). Quantum states (except the vacuum) appear as tangent vectors to C. The vacuu...

متن کامل

1 1 Ju l 2 00 3 The Theory of Tight Closure from the Viewpoint of Vector Bundles

Contents Introduction 3 1. Foundations 13 1.1. A survey about the theory of tight closure 13 1.2. Solid closure and forcing algebras 23 1.3. Cohomological dimension 25 1.4. Vector bundles, locally free sheaves and projective bundles 28 2. Geometric interpretation of tight closure via bundles 30 2.1. Relation bundles 30 2.2. Affine-linear bundles arising from forcing algebras 32 2.3. Cohomology ...

متن کامل

Characteristic classes of vector bundles over CP ( j ) × HP ( k ) and involutions fixing CP ( 2 m + 1 ) × HP ( k ) ∗

In this paper, we determine the total Stiefel-Whitney classes of vector bundles over the product of the complex projective space CP (j) with the quaternionic projective space HP (k). Moreover, we show that every involution fixing CP (2m+1)×HP (k) bounds. AMS subject classifications: 57R85, 57S17, 55N22

متن کامل

Vanishing Theorems of Negative Vector Bundles on Projective Varieties and the Convexity of Coverings

We give a new proof of the vanishing of H1(X, V ) for negative vector bundles V on normal projective varieties X satisfying rank V < dim X. Our proof is geometric, it uses a topological characterization of the affine bundles associated with non-trivial cocycles α ∈ H1(X, V ) of negative vector bundles. Following the same circle of ideas, we use the analytic characteristics of affine bundles to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013